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J. Phys. A: Math. Gen. 19 (1986) 1151-1161. Printed in Great Britain 

Generalisation of the Landau-Zener calculation to three levels 

C E Carroll and F T Hioe 
Department of Physics, St John Fisher College, Rochester, New York 14618, USA 

Received 8 August 1985 

Abstract. The Landau-Zener calculation, for avoided crossing of two energy levels, is 
generalised by putting in a third level, so that three levels approach one another. A 
three-level model of an atom, with two transitions driven by laser beams, can be transformed 
into our model by using the rotating-wave approximation. The resulting transition prob- 
abilities have a simple analytic form, like those of the original two-level model. 

1. Introduction 

Exact solutions of the time-dependent Schrodinger equation are useful in studying the 
dynamics of quantum systems. Landau (1932) and Zener (1932) found such a solution 
for the dynamical model corresponding to avoided crossing of two energy levels. The 
calculated transition probabilities have been applied in theories of atomic (Geltman 
1969) and nuclear (Abe and Park 1983) collisions, and an application to quantum 
optics is outlined below. A generalisation of this calculation to treat avoided crossing 
of three or more energy levels would be useful. A simple three-level model is formulated 
and solved in this paper. 

The Landau-Zener model includes only two quantum states. They are widely 
separated in energy at large negative and large positive times. The avoided crossing 
at times near zero gives a transition from one quantum state to the other, with probability 
given by a simple formula. Rubbmark et al (1981) have verified this calculation by 
measuring the probability of transition between two Rydberg states in lithium. Our 
simple and symmetric three-level model similarly gives simple formulae for transition 
probabilities, which might possibly be confirmed by experiments with laser-driven 
atomic transitions. 

The models with two or three energy levels are specified precisely by writing the 
time-dependent Schrodinger equation for a two- or three-component wavefunction. 
The Hamiltonian appears as a 2 x 2 or 3 x 3 Hermitian matrix. The diagonal matrix 
elements are proportional to t, the time. Off-diagonal matrix elements are independent 
of t; they prevent crossing of eigenvalues of the Hamiltonian matrix, which are called 
energy levels. These time-dependent energy levels are shown in figure 1. The Schrodin- 
ger equations for the two- and three-level models are 

- rt 
and 

Here, h = 1 and a, b, c are components of the wavefunctions; the components are 
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T i o  Levels Three levels 

Figure 1. Eigenvalues of Hamiltonian matrix as functions of time. The minimum gap 
between two eigenvalues is (CL or flfii. 

complex functions of t. The rate of sweeping through the avoided crossing is r, and 
* r  are the slopes of the asymptotes of the hyperbolae in figure 1. The off-diagonal 
elements of the Hamiltonian matrix in (1) and (2) are proportional to a parameter R, 
which may be complex. The coefficients of 0 in (1) and (2) are chosen so that \RI is 
the minimum separation between top and bottom energy levels in figure 1. 

Although any 2 x 2  Hamiltonian matrix that is Hermitian and linear in t can be 
transformed into the form appearing in ( l ) ,  there are many three-level generalisations 
to choose from. The Hamiltonian appearing in (2) is a simple generalisation of the 
time-independent Hamiltonian studied by Cook and Shore (1979). Solutions of (2) 
can be obtained by the method of Majorana (1932), but not for arbitrary initial 
conditions, nor for the initial conditions we shall use. On the other hand, a different 
generalisation of the Landau-Zener model has a 3 x 3 Hamiltonian matrix with one 
diagonal element proportional to t ,  the other eight matrix elements being constant. 
For such a Hamiltonian, the Schrodinger equation can be solved by the method of 
Demkov (1966). See Nikitin (1970) for applications of this three-level model to atomic 
collisions. 

Solution of (1) or ( 2 )  must give transition probabilities that depend on IRI2/r, a 
dimensionless combination of the parameters appearing in (1) and (2). If lrl is large, 
the atomic or molecular system can scarcely respond to the rapidly changing Hamil- 
tonian, and occupation probabilities of the two or three quantum states are always 
close to their initial values. The transition probabilities can be increased by decreasing 
Irl, with fixed 101, or increasing (RI, with fixed Irl. The adiabatic-following approxima- 
tion (Messiah 1960, Abragam 1961) is applicable if lRl is large and I T ]  is small, because 
no degeneracy of energy levels appears at any time; see figure 1. 

In our treatment of (1) and (2), we shall ignore the trivial case of r = 0, and number 
the rows and columns of the Hamiltonian matrix so that r > 0. The dimensionless 
parameter is then defined by 

s = f i /4r' /2 .  ( 3 )  
We shall derive the transition probabilities given in the last column of table 1. Their 
behaviour at small and large values of Is1 agrees with the above assertions. The 
probabilities of transition from one energy level to another, and of no transition, turn 
out to be quadratic polynomials in exp(-2r/sI2). These results are remarkably simple, 
but we can derive them only by lengthy analysis. 
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Equation (2) describes a simple and symmetrical three-level model that can be 
related to an experiment in which two transitions in an atom are driven by two laser 
beams. This relation is shown in 5 2 .  A brief description of our calculation is given in 
5 3 and the results are discussed in 9 4. The method of solving (2) is fully described 
in the appendix. 

2. Application to quantum optics 

In this section, we describe two simple optical experiments, and sketch the approxima- 
tions that lead to (1) or (2), respectively. 

Suppose that transitions between atomic energy levels are driven by the optical- 
frequency electric fields of one or two lasers. The optical-frequency electric fields are 
described classically, and the effect of the atom on the applied fields is ignored. The 
atomic energy levels that are used are numbered from 1 to 2, or from 1 to 3; their 
energies appear as diagonal elements in the Hamiltonian matrix, as first written. 
Transitions between atomic levels with consecutive numbers are driven by the applied 
fields, which oscillate with constant amplitude. The Rabi frequency for each transition 
is defined as 2dE, where d is the transition dipole moment and E is the amplitude of 
the oscillating electric field (Allen and Eberly 1975); we set h = 1. The off-diagonal 
elements of the Hamiltonian matrix, as first written, oscillate at optical frequencies, 
and each is proportional to the corresponding Rabi frequency. Since dipole transitions 
between levels 1 and 3 are forbidden by Laporte’s rule, zeros appear in two corners 
of the matrix in ( 2 ) .  Although the applied oscillating fields are described classically, 
they are supposed so weak that each drives only one transition, and only when its 
frequency is near resonance. We shall ignore the counter-rotating components of the 
oscillating electric fields; they are absent if circularly polarised light propagating along 
a magnetic field is used. This rotating-wave approximation (Allen and Eberly 1975) 
permits application of a unitary transformation that removes all optical-frequency 
oscillations from the Hamiltonian and wavefunction (see Einwohner et a1 1976). The 
unitary matrix used in this transformation is diagonal and time dependent; hence, the 
numbering of the atomic levels is unaffected by this transformation. An important 
effect of the transformation is to reduce each off-diagonal element of the Hamiltonian 
matrix to a constant. This gives us the off-diagonal elements that appear in (1) and 
( 2 ) .  In ( l ) ,  R is the Rabi frequency but, in (2), both Rabi frequencies are equal to 2-”’R. 

The effect of this transformation on the diagonal elements of rhe original Hamil- 
tonian matrix is to replace each of them by a relatively small frequency difference, 
proportional to the detuning or equal to a linear combination of the two detunings. 
Each detuning is equal to the difference between the atomic resonance frequency and 
the frequency of the applied oscillating field that drives the transition. One of our 
simplifying assumptions is that each detuning is proportional to t, the time. A con- 
sequence of this is that the applied oscillating fields have a negligible effect on the atom 
when It( is sufficiently large; this can be seen from the usual models for dispersion or 
from the exact solutions of (1) and (2). Hence, our mathematical model need not 
describe turning on the lasers at an early time and turning them off at a late time. 

The detunings that are proportional to t need not be produced by varying the 
frequencies of the laser beams. Stark or Zeeman shifts that are linear in t can be 
produced by appropriate external fields. Time-dependent Stark shifts were used to 
vary the detunings in an interesting experiment by Hulet and Kleppner (1983). 
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In the three-level model, any one of the three levels may be the ground level. The 
two atomic transitions are driven by two oscillating electric fields, and we assume that 
the frequencies of the applied oscillating fields both pass through resonance at t = 0. 
The two energy-level differences may have different signs; their absolute values are 
equal to the resonant frequencies. If the two resonant frequencies are equal, the two 
oscillating applied fields may be derived from one laser. 

We should also mention that the unitary transformation formulated by Einwohner 
er a1 (1976) can be arranged to yield a vanishing trace in the resulting Hamiltonian 
matrix. This possibility has been used to write (1) and (2) in the forms given. 

This section has related the Schrodinger equations (1) and (2) to possible experi- 
ments in which atomic transitions are driven by laser beams. The rotating-wave 
approximation was used to simplify the time-dependent Hamiltonian matrix, and 
Laporte's rule was used to argue that zeros appear in two corners of the matrix in (2). 

3. Solution of Schrodinger equation 

Equation (1) can be solved by using confluent hypergeometric functions; different 
forms of the solution are given by Zener (1932) and Wannier (1965). Both papers cite 
Whittaker and Watson (1927), where many properties of confluent hypergeometric 
functions are stated and derived. Equation (2) can be solved by generalising the 
confluent hypergeometric functions. The required properties of the new functions must 
be derived; this is done in the appendix. 

A simple preliminary step toward solution is to write (1) and (2) in dimensionless 
form. The dimensionless parameter s is defined by (3) and the dimensionless time 
variable is 

r = ( r/2)'/2t. 

Recall that r > 0. We now want to solve 

and 

We can find integral representations of the solutions of these two equations; we integrate 
around a loop in the complex plane. The integral representations given in the appendix 
serve as a basis for writing the general solution of (4) or ( 5 ) .  We shall assume that 
one of the quantum states is occupied, with unit probability, in the limit as r+ -CO, 

and calculate the resulting occupation probabilities in the limit T +  +CO. These final 
occupation probabilities are diagonal elements of the density matrix; they are given 
in the last column of table 1 and plotted in figures 2 and 3. 

Our analytic solutions of ( 5 )  are vector functions of r ;  each vector has three 
complex components. These vectors have jump discontinuities at r = 0. These discon- 
tinuities must be removed; the necessary calculations lengthen our appendix. As a 
by-product of these calculations, we find explicit formulae for the wavefunctions at 
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Figure 2. Occupation probabilities at large positive times, 7 -  +a. The initial condition 
is that level 1 is certainly occupied at large negative times. 

1512 

Figure 3. Occupation probabilities at large positive times, T + fa. The initial condition 
is that level 2 is certainly occupied at large negative times. 

T = 0. The resulting occupation probabilities at T = 0 are given in the second column 
of table 1. 

We must emphasise that alternative methods of solution can be applied to (1) or 
(4), but not to (2) or (5). The method of Demkov (1966) gives integral representations 
of solutions of the Schrodinger equation, but it is not applicable to (5). The method 
of Majorana (1932) gives solutions of ( 5 ) ,  but not solutions that satisfy the initial 
conditions we use. 
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Table 1. Changes of occupation probabilities, from large negative times to f = 0 to large 
positive times. The initial conditions appear in the first column. 

Limit of occupation Occupation Limits of occupation 
probabilities probabilities probabilities 
as I + --CO at f = O  as t++m 
~ 

1 
0 

0 
1 

1 
0 
0 

0 
1 
0 

0 
0 
1 

exp(-4n/s12) 
1 - exp( -4pl~12) 

1 -exp(-4nls/’) 
exp( -4pl~12) 

exp(-4n/s/’) 
2[1 -exp(-2.rr(s12)] exp(-2n/s(’) 
[1 -exp(-2ajs/’)]’ 

2[1 -exp(-2n(sI2)] exp(-2n/s/’) 

2[1 -exp(-2a(s12)I exp(-2n(s(’) 
[1-2exp(-2n/s/’)]’ 

[ I  - e x p ( - 2 ~ / s / ’ ) ] ~  
2[1 -exp(-2a(s1’)] exp(-2nJs/’) 

exp( -4+12) 

4. Discussion 

The final occupation probabilities shown in figures 2 and 3 have simple limits as Is( + 0 
and Is1 +CO, which are given by the sudden approximation and the adiabatic-following 
approximation, respectively. The time-dependent eigenvalues of the Hamiltonian 
matrix and their minimum differences are shown in figure 1 .  The rate of change of 
the Hamiltonian has the dimensions of the square of a frequency or the square of an 
energy, and it should be compared with the square of an eigenvalue difference. The 
ratio is roughly l/lsI2; the precise value depends on 7 and on the choice of eigenvalue 
difference. If Is/’ is small, the change of the Hamiltonian is rapid compared to the 
square of the eigenvalue difference, and the occupation probabilities are always close 
to their initial values; see table 1 .  

If \s i2  is large, the occupation probabilities at any time are nearly those found from 
the adiabatic-following approximation. For adiabatic following, see the early experi- 
mental work of Phipps and Stern (1931) and later experiments by Bloch et a1 (1946) 
and Grischkowsky (1970). A physical interpretation is given by Abragam (1961) and 
a geometrical interpretation by Powles (1958). In order to state the adiabatic-following 
approximation in a precise form, and generalise it to the N-level problem, the approxi- 
mate density matrix has recently been written as a polynomial in the Hamiltonian 
matrix (Hioe 1983). Our three-component wavefunctions, for 7 = 0 and / S I  + CO, give 
density matrices that agree with the three-level calculation by Hioe (1983). If R and 
s are real, the adiabatic-following limit, or s2 + CO limit, of the density matrix is real 
and symmetric. The imaginary antisymmetric part of the density matrix falls off as 
l / s 2  when s2 is large. However, in table 1 ,  deviations from the adiabatic-following 
limit decrease exponentially as s2 + CO. We discuss the different behaviours of these 
deviations from the adiabatic-following limit in another paper (Carroll and Hioe 1986). 
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The final occupation probabilities, shown in figures 2 and 3, exhibit large changes 
as Is1 is increased from 0 to m. If level 1 is occupied with unit probability at large 
negative times, we can obtain final occupation probabilities of (0.25,0.50,0.25) for the 
three levels. lsI2 = (In 2 ) / ( 2 n )  = 0.1103 is the condition for this. The symmetric initial 
condition is that level 2 is occupied with unit probability at large negative times. This 
initial condition and the symmetry of our model imply that the occupation probability 
is transferred equally to the other two levels. If Is]’ is large, figure 3 or the adiabatic- 
following calculation shows that the occupation probability is finally transferred back 
to level 2. But in the case of [ S I *  = (In 2)/(27r) = 0.1 103, the occupation probability of 
level 2 approaches zero at large positive times. 

A simpler calculation of the three final occupation probabilities could be based on 
a two-level approximation, in which only two levels at a time are involved in an avoided 
crossing, while the other level is far away. Such a calculation can give any set of final 
occupation probabilities that add up to unity. But the symmetry of our three-level 
model demands that the two avoided crossings be similar, so that they give the same 
transition probabilities. Such a simplified calculation cannot give the specific results 
that we find for 1s1’ = (In 2)/(257). In any event, this two-level approximation is not 
applicable to our model, in which the three levels are closest together at t = 0. 

5. Conclusion 

The two-level dynamical model of Landau and Zener has been generalised to give a 
symmetrical three-level model. The wavefunctions for the new model, and the resulting 
transition probabilities, are analytically similar to those of the Landau-Zener model. 
This is to say that the transition probabilities are given by remarkably simple formulae. 
Our work could be used to predict transition probabilities in an optical experiment. 
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Appendix 

The general solution of the Schrodinger equation, (4) or ( 5 ) ,  is derived in this appendix. 
Also, particular solutions are found and used to construct table 1. 

Solutions of (4) and (5) can be written in terms of path integrals. In the vector V, 
each component is a complex function of T,  and is proportional to an integral along 
a certain path in the complex plane. A different path of integration can give a different 
solution; this allows us to find a complete set of orthonormal vectors V. Each basis 
vector V satisfies (4) or (5) when T # 0, but one component of each vector is discon- 
tinuous at 7 = 0. The general solution of the Schrodinger equation is continuous, of 
course; it is equal to a linear combination of the vectors V when T < O ,  and equal tc 
a different linear combination when T > 0. We are obliged to find the unitary transforma- 
tion that connects the basis vectors used for T > 0 with those used for T < 0. 

For the two-level model, the general solution can be obtained in several other ways, 
some of which use the known properties of various confluent hypergeometric functions 
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(Whittaker and Watson 1927). Wannier (1965) gives a remarkably brief calculation, 
using large complex values of T to get from the negative real T axis to the positive real 
T axis. We are not able to do a similar calculation for the three-level case, and T is 
real throughout the following calculations. 

Solutions af (4) and ( 5 )  can have the forms 

and 

respectively. We have multiplied each of these vectors by a convenient scalar function 
of /SI’; it will turn out to be a normalisation factor. To define the integrands precisely, 
we draw branch lines on or parallel to the negative real z axis; they run to the left 
from i i ,  or from 0 and ki.  The same path of integration is used in all components of 
each vector V. Partial integration is used to show that (4) and (5 )  are satisfied; to 
make the integrated parts vanish, we assume that the path of integration does not cross 
a branch line, and that both ends are far to the left in the z plane, where lexp(zT2)1 is 
negligible. If T # 0, the integrals obviously converge, and the Schrodinger equation is 
satisfied exactly. Since a basis function that vanishes identically is of no use, the path 
of integration must enclose at least one branch point and the branch line drawn from 
it. We use a path of integration that encloses only one branch line and goes around 
the branch point in the usual counterclockwise direction. 

We recognise that the integrals in (AI) have the same form as the path integral 
used to define the Whittaker function (Whittaker 1903). The integrals in (A2) are 
slightly more general. In either case, the precise form of the integrands could be found 
by Laplace’s method. 

We could define V, , V2 and V, by using (A2) and paths of integration that enclose 
z = -i, z = 0 and z = +i, respectively. But a small modification of this definition is 
necessary; V2 is defined by using a normalisation factor of exp(rrls12), in place of the 
exp(f rrls12)/[sinh(  TIS^^)]^'* that appears in each component of (A2). In the two-level 
case, we define VI by using (Al )  and a path of integration that encloses z = -i; and 
we define V, by using 

and a path of integration that encloses z = +i. 
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We now find the asymptotic forms of these vectors as T + *CO, and use these forms 
to show that these vectors are normalised and orthogonal. The normalisation integral 
becomes, in this paper, a sum of the absolute squares of the two or three components. 
Similarly, the overlap integral becomes a sum of products; it involves one vector and 
the complex conjugate of another. Letting T +  fa, we find 

exp(-iT2 - i(sI2 l n ( 2 ~ ~ )  + i arg(s) + i  arg r(i(sI2) -a iv)  
0 
0 

VI- ( 
and 

0 
0 

exp(iT2+i\sl2 ln(27’) - i  arg(s) -i arg r(ils12)+aiv) 

Terms of order 1/ITl are not shown here; we need only the leading term of the asymptotic 
series. Similar asymptotic forms are found in the two-level case. These asymptotic 
forms show that the vectors V are properly normalised when ( T I  is sufficiently large. 
Then the Schrodinger equation (4) or (5) can be used to show that they are properly 
normalised for other values of T, except for T = O .  Similarly, we can show that two 
vectors with different subscripts are orthogonal, except at T = 0. 

This completes the exact solution of the Schrodinger equation, except for the 
difficulty at T = 0 and the resulting problem of connecting positive-.r solutions with 
negative-.r solutions. The first step toward overcoming this difficulty is to find the 
limits of the vectors V as T + 0, from above and from below. The integrals all converge 
when T # 0, because exp(zT2) appears in each integrand. In the components of each 
vector that do not contain a factor of T outside the integral sign, the integrands behave 
like exp(zT2) when IzI is large. This behaviour gives uniform convergence of the 
integral, in an interval that includes T = 0. Uniform convergence implies that all such 
components are continuous at T = 0; thus, we have only to evaluate the integrals at 
T = O .  In the component of each vector that does contain a factor of T outside the 
integral sign, the integrand behaves like z - ” ~  exp(zT2) when IzI is large. This implies 
that the integral diverges when T = 0 but it is not difficult to find the limits of such a 
component as T + O +  and as T+O-. The two limits are not equal. The limits of our 
basis vectors V are collected in table 2. The ambiguous signs show components that 
have jump discontinuities at T = 0. 

In each vector V, one component becomes dominant as T +  --CO. This is useful if 
the initial condition is that one of the energy levels is occupied, with unit probability, 
at large negative T. The corresponding occupation probabilities at T = 0, given in the 
middle column of table 1, are found from the limits as T + 0-, given in table 2. These 
limits are also used to compute the density matrices at T = O ;  this computation is 
mentioned in Q 4. 

The general solution of the Schrodinger equation can now be written in terms of 
the basis vectors V, which form a complete orthonormal set. The general solution is 
equal to A ,  V, + Az V2 + A3 V3, or a similar expression with two terms. The coefficients 
A , ,  A* ,  A3 are constant, so long as the vectors V satisfy (4) or ( 5 ) .  However, the 
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Table 2. Limits of basis vectors as 7+ O*. 

Vector Limits 

Two-level case 

VI 

v2 

Three-level case 

VI 

v2 

I 

I I 

I *i exp(-n(sI2) I 

I * i [ s i n h ( ~ l s l * ) ] ' ~ ~  exp(-fnlsj2) I 

vectors V are discontinuous at T = 0. Hence, the general solution must be written as 
A,( *) VI + A2( *) Vz + A3( *) V3, where the ambiguous sign is the sign of T. The general 
solution is continuous (and analytic) at T = 0; this condition gives linear equations to 
determine A,(+), A2(+), A,(+) in terms of A,(-), A2(-), A3(-), or vice versa. These 
linear equations can be written explicitly, using the results in table 2, and the deter- 
minant does not vanish. In the two-level case, the linear equations and their solution 
involve ratios of gamma functions. In the three-level case, we find 
A,(+) = exp(-2.rr/s12)A,(-) -2[sinh(.rrlsl 2 ) ]  1/2 exp(-$.rrls(')A,(-) 

-2 sinh(.rr)s(') exp(-.rr/sl*)A,(-), 

A2(+) =[1-2 exp(-2.rrlslz)]A2(-) - 2 [ s i n h ( ~ l s l ~ ) ] ' / ~  

and 

A,(+) = -2 sinh(.rrlslz) exp(-als12)A,(-) - 2 [ s i n h ( ~ l s l ~ ) ] ' / ~  

~exp(-;alsl~)A~(-)+exp(-2.rrIs1~)A,(-). 
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The coefficients in these formulae form a unitary matrix (the S matrix), because we 
have made a unitary transformation from one set of basis vectors to another. It seems 
remarkable that the S matrix is real and symmetric. 

The transformation formulae (A3) may be used to continue the general solution 
of (5) from negative T to positive T. The simplest initial condition is that one of the 
three levels is occupied, with unit probability, in the limit as T - ,  --CO. The asymptotic 
forms of the vectors V simplify computations with this initial condition. For example, 
if level 1 is occupied with certainty at large negative times, then [A , ( - ) \  = 1, A*( - )  = 
A3(- )  = 0, and the coefficients A,(+) are determined by (A3). In any case, the probabil- 
ity that level j is occupied at large positive times is lAj(+)12. Using the transformation 
formulae (A3), and corresponding formulae for the two-level case, we find the results 
shown in the last column of table 1. 
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